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Theory of Mechanical Properties of Fibrillar 
Structures 

J. W. S. HEARLE, Department of Textile Technology, The Manchester 
College of Science and Technology, Manchester, England 

Introduction 

In an earlier paper1 a theory of the deformation of plant fibers with a 
regular spiral arrangement of fibrils was worked out and shown to conform 
reasonably well with experimental results. A structure of this type is 
only possible where some specific biological mechanism is involved in the 
formation of the fiber. If crystallization of polymers in oriented man- 
made structures, such as synthetic and regenerated fibers, occurs in fibrillar 
form, it would be expected to give a somewhat irregular arrangement such 
as is illustrated in Figure 1. The likelihood of such a structure's actually 
occurring has been discussed in other  paper^.^^^ The present paper is 
concerned with working out an approximate theoretical treatment of the 
deformation of such a structure, and a comparison of its predictions with 
experimental results. 

Modulus of an Irregularly Oriented Fibrillar Structure 

The Theoretical Male1 

In a partially crystalline, partially oriented, fibrillar structure (and in the 
absence of any special organization such as the spiral structure of plant 
fibers) it may be assumed that the fibrils follow a rather irregular path, 
the whole collection of fibrils being fitted together into an interlocked as- 
sembly, such as is illustrated in Figure 1. Between the imperfectly 
crystalline fibrils there will be the noncrystalline regions. To predict 
fiber behavior, it would be very useful to know the extent of curving and 
intertwining of the fibrils; these effects are probably exaggerated in 
Figure 1.  

When a tension along the line of the fiber axis is applied to such a struc- 
ture, extension can occur as a result of two mechanisms. First, the fibrils, 
together with the interfibrillar material, may stretch. Second, the fibrils 
may bend (or unbend) so that they follow a straighter path, until at the 
limit they are all pulled out so as to lie parallel to the fiber axis. Ac- 
companying the straightening of the fibrils, there will be some deformation 
of the noncrystalline regions as the fibrils are pulled closer together in some 
places and separated farther from one another in other places. 
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Fig. 1. Roughly oriented fibrillar structure. 

Unfortunately, the model shown in Figure 1 would not be easy to analyze 
theoretically, and drastic simplification is needed in order to make any 
progress. The deformation of any one fibril, together with the closely 
associated noncrystalline regions, may be viewed as taking place against a 
steady background of the rest of the structure-provided that it is assumed 
that there is no correlation between the paths of adjacent fibrils- that 
the neighboring fibrils are as likely to move toward the fibril under con- 
sideration as away from it. Further simplification comes if the curve in the 
fibril is regarded as being in a single plane containing the fibril axis: this 
reduces the problem to two dimensions. Finally, the shape of the curve is 
idealized into a regular zigzag, and the model structure shown in Figure 2 
is obtained. 

This model may be characterized by the following parameters: 
Angle of orientation (between fibril and fiber axis) = 8 
Thickness of fibril = t 
Length of fibril in one repeat of zigzag = 2a 
Volume of crystalline material per total fiber volume = 7 
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Fig. 2. Idealized model structure. 

The thickness of the element perpendicular to the plane of the paper is 
put equal to b. (As the problem has been reduced to two dimensions, this 
could be put equal to unity without further loss of generality, but the sym- 
bol b is retained in order to facilitate dimensional checking.) 

If z is the average distance between the center lines of fibrils, taken 
perpendicular to the fiber axis, we shall have: 

7 = t wc e/z (1) 

Extension of Fibrils 
Figure 3 represents the extension of one half-repeat of the fibrillar zigzag, 

If x is the length of the the volume of the structure being kept constant. 
half-repeat parallel to the fiber axis, and d x  the increase in x ,  then: 

Fiber strain = E = dx/x 
Volume of element = x(a2 - x2)'"b 

Since the volume remains constant during the deformation, it follows that: 

[(a2 - x2)'/% - z2(a2 - z2)-'''b]d~ + ZU(U' - ~ * ) - " ' b d ~  = 0 

d a / d x  = [.'(a2 - z')-"' - (a2 - x ~ ) " ' ] / [ x u ( u ~  - x2)--'/' I =  
( 2 x / a )  - ( 4 4  ( 2 )  
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( al-xL)K 
Fig. 3. 

Strain in fibril is: 

da/a = (./a) (duldx) (&/z) 

= (z/a)[(244 - (ah11 (dx lz)  

= 4 2  C O S ~  e - 1) 

= cos 2e (3) 

E ~ , , ~ ~  cos 2e (4) 

Therefore the stress in fibril is: 

where Ec,II = crystalline fibril modulus, parallel to fibril axis. 
Thus : 

tension in fibril = E,,lltbe cos 28 (5)  
and : 

Component of tension parallel to fiber axis = E,,lltbe cos 28 cos 0 (6) 

As we are considering an element of fibril and associated region, of total 
width z, the part of the overall fiber stress due to fibrillar extension is: 

(7) E,,lltbc cos 20 cos B/bz = rE,,llt cos 28 C O S ~  e 
from eq. (1). 

There will also be some contribution from the noncrystalline regions, and 
this may be roughly allowed for by adding in a term, (1 - ~ ) E , , , , E  cos 
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28 cos2 8, where 
to the fibril axis. 

is the modulus of the noncrystalline regions parallel 
This then gives the fiber modulus (for this mechanism) : 

(8 )  [7Ec,ll + (1 - ~ ) E n , l , ]  cos 28 cos2 8 = El cos 28 cos2 8 

where 131 = ~ E , , I I  + (1 - Y)En,ll. 
Strictly, a contribution for the transverse deformation of the fibrils 

should also be included, but this deformation will not be important when 0 
is small (i.e., under the conditions for which this mechanism is found to 
predominate), and so it has been neglected. 

Deformation by  Bending of Zigzag and Accompanying Strain 

Actual Extension of the Zigzag. Let AOB in Figure 4 represent one 
half-repeat of a fibril which, under a tension F acting parallel to the fiber 
axis and along the center line of the fibrillar path, deforms by bending to  
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the line COD without changing in length. The problem is that of the 
bending of a.beam A 0  of length a/2 with a force F sin 0 applied perpendic- 
ular to the end of the beam. Applying the usual equation for the de- 
formation of a  antil lever,^ we have the displacement AC, perpendicular to 
the end of the fibril: 

6 = [4F sin e ( ~ / 2 ) ~ ] / E , , ~ ~ b t ~  

= Fa3 sin e/2E,,1,bt3 (9) 

The displacement of C, end of fibril, parallel to the fiber axis is 6 sin 8, 
and thus the corresponding fiber strain is: 

c = 6 sin e/ [(a/2) cos el (10) 

( 1 1 )  = Fa2 sin2 O/E,,l,bta cos e 

The contribution to modulus from this cause is: 

(F/zb)( l /e)  = E,,Il(t3/a2z)(cos B/sin2 0) 

= ~ E , , , l ( t / a ) ~  Cot2 e (12) 

from eq. ( 1 ) .  
Strain parallel to Fiber Axis. Accompanying the extension of the zigzag 

there will be an extension of the noncrystalline regions parallel to the fiber 
axis. 

Strain Perpendicular to Fiber Axis. As a result of the bending of AOB, 
some parts of the fibril, such as t,he element a t  I in Figure 4, will be pushed 
nearer to the neighboring fibril whose center line is GH, while others, such 
as the element a t  K, will be pulled farther away. Consequently, some 
parts of the material lying between fibrils will be compressed while other 
parts will be extended. This deformation will provide a resistance to the 
bending. 

The neighboring fibril, represented by its center line GH, will also be 
bending, but assuming that there is no correlation between the relative 
positions of neighboring fibrils, any movement of an element of this fibril is 
as likely to be away from as to be toward the fibril AB. We may therefore 
consider the deformation induced by the bending of AT3 as being relative ta 
the straight line GH. We must, however, count in the deformation in t.he 
region to the left of AB, arising from the bending of AB. It may be noted 
that the deformation in these regions resulting from the bending of GH, 
and the comparable fibril to the left of AB, are not counted in. 

Consider an element IJ of thickness dy a t  a distance y from a line through 
0 perpendicular to the fiber axis. From the cantilever theory14 it follows 
I hat the displacement 61 of I perpendicular to A 0  is given by: 

This will give contribution ta the modulus = (1 - y)E,,,,,. 

= 36[2(y sec e/a)2 - 4/3(y sec O / U ) ~ ]  

= cot e ( s p 2  - 2p3)  (14) 
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from eq. ( lo) ,  where p = y sec e/a. 

Displacement of I perpendicular to fibril axis = 61 cos 0 

This change in length will be shared between a length t sec 0 of crystalline 
region and a length (z - t sec 0) of noncrystalline region, in which strains 
of B,, and en, respectively, occur. But for the equality of stresses we must 
have : 

ec8o.L = 6 n E n . l  (15) 

where Ec,l and En,l are the moduli of crystalline and noncrystalline re- 
gions, respectively, perpendicular to the fiber axis. Therefore: 

cos e = e,t sec e + t,(z - t sec 0) 

= enz[l - 7 + ~En,JEc,ll 

en = aI cos e/2(l - y + a y )  

= en[z - t sec 0 + (En,JEc, l ) t  sec 01 

(16) 

(17) 

from eq. (1). 

where a = En,l/Ec.l. 
The energy change resulting from this deformation of IJ is given by: 

[1/2Ec,l~,,2t sec ebdy + 1/2En,l~n2(~ - t see 0)bdyl 

= 1/2~n2[(En12/Ec,l)t sec 0 + En,& - t sec 8)lbdy 

= (bch2 cos2 8/2z)[En,l(ay + 1 - y)/(l  - y + a y ) ' ]  d y  

= [MI2  C O S ~  O E n , l ( a y  + 1 - y)/2~(1 - y + a y ) ] d y  

= [ b E n , l e 2 ~ 3 / 2 ~ ( 1  - + z ) ]  C O S ~  e Cot2 e(3p2 - 2p3)2dp (18) 

from eq. (1). 

the right of A 0  is: 
Since p = 1/2 when y = (a/2) cos 8, the total energy for deformation to  

[ b ~ , , ~ c 2 ~ 3 / 2 ~ ( 1  - + ar)] C O S ~  e Cot2 es1&3p2 - 2 ~ 9 % ~  (19) 
But: 

j1&3p2 - 2p3)2dp = - 12p5 + 4 p ) d p  

= [(9p6/5) - (12p6/6) + (4p7/7)I1d2 
= (9/5.26) - (1/25) + (1/7.26) 

= 33/32.35 

Thus, the energy of deformation to the right of A 0  is: 

(33/64.35) [En,lu3/z(l - y + ay)] c0s3 &cot2 0 be2 

Energy supplied = 1/2E't2zb(u/2) cos 8 

(20)  

This energy must be supplied by the force extending the fiber, but we have: 

(21) 
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where E' is the contribution to the modulus from this cause. Taking 
account of energy of deformation to both right and left of AO, as mentioned 
carlier, we get: 

'/zE'a2zb(a/2) cos 0 = 
(33/32.35) [En,,a3/z(1 - y + a y )  1 coss e cot2 eb2 (22) 

E' = (33/28O)(u2/z2) [1/(1 - + a?)] COS' 0 Cot2 e En,* 

= (33/28o)(a2/t2) [y2/(l - + a ~ ) ]  c0s4 e Cot2 e En,l (23) 
Summation of Contribntions to Modulus. The total fiber modulus when 

deformation occurs as a result of bending of the zigzag will be given by 
adding together the three terms calculated above. This gives: 

Fiber modulus = yE,,II (t/a)2 cot2 0 + (1 - y)En,(l 

+ E,,,(33/280)(a/t)z[y2/(1 - y + a7)l C O S ~  e Cot2 e (24) 

from eqs. (12), (13), and (23). 
It is to be expected that (t/a) << 1; i.e., the thickness of the fibril is 

much less than a, which corresponds in the real material to the average 
distance between points of inflexion in the curved path followed by a fibril. 
Because (u/t)2 >> 1, it wil l  be possible to neglect the first two terms in the 
above expression, and we thus see that the effective resistance to deforma- 
tion by bending of the zigzag comes from the lateral deformation of regions 
between the fibrils. Furthermore if En,* << E,,, as would be expected, 
a << 1, and the term in a y  can be dropped. We thus have the fiber 
modulus due to this mechanism: 

E , , ~  [33r2/280(i - -,) ](~/t)2 C O S ~  e Cot2 e = E~ ~ 0 8 4  e Cot2 e (25) 

where E2 = (33y2/[280(1 - - , ) l ) (~ / t )~E, ,~ .  

Combined E$ect of the Two Mechanisms 

The resislances to extension in the mechanisms, arising respectively 
from extension and bending of the fibrils, have been worked out. These 
two mechanisms of extensions are alternatives; in other words, any de- 
formation occurring as a result of fibrillar extension reduces the amount of 
bending needed to give the required fiber extension, and vice versa. If the 
resistance to deformation by one mechanism is much less than the resist- 
ance by the other, then the latter may he neglected. The curves plotted 
in Figure 5 show that for highly oriented fibers, when e is small, the ex- 
tension mechanism, with E = El cos 28 cos2 8, is dominant; in fact, the 
resistance for the bending mechanism, given by EZ C O S ~  e cot2 8, is infinite 
when e = 0. However, this latter function decreases more rapidly with 0, 
and the bending mechanism may be expected to predominate when 0 is 
large. 

For intermediate values of 8, the deformation will be due partly to 
extension of the fibrils and partly to bending. The exact form of the 
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0 
Fig. 5. Curves of modulus functions againet orientation angle e: (a - e) El COE 28 

cm2 0 for EL = 2OOO (a), 1000 (b), 5OOO (d), 10,000 (c), 20,000 (e); (f - 1) Eo cos'e cotP 
e for EZ = 500 (f), lo00 (g), 2OOO (h), 5000 (i), 10,000 (j), 20,000 (k), 50,OOO (1); (m - r) 
E I K  co8 28 cod e cot2 @ / E l  cm 28 + E2 ccez e cot2 e for El = lo00 and E2 = 500 (m), 
El = 5OOO and Et = 1000 (n), El = 10,000 and Ez = 2000 (o), El = 20,000 and EZ = 
1000 (p), El = 20,000 and Et = 2OOO (q), El  = 20,000 and E2 = 5OOO (r). 

equation combining the two functions may be complex. However, the 
arrangement is generally similar to two springs in series (where the ex- 
tension of one spring reduces the extension of the other) and the same com- 
bination equation may be used as an approximation. This gives 
the fiber modulus: 

E = E~ cos 2e C O S ~  e E~ C O S ~  e Cot2 e/(E1 cos 2e cosz e + E~ C O S ~  e Cot2 e) (26) 

= EIEz cos 2e C O S ~  e Cot2 e / (E,  cos 2e + E~ C O S ~  e Cot2 e) 
The value of El from eq. (8) will be of the order of magnitude of the 

modulus of extension of the crystalline fibrils, for which values have been 
calculated for some materials.6 The value of Ez from eq. (25) will be of the 
order of magnitude of 0.1 ( U / ~ ) ~ E , , , .  This is very difEcult to estimate 
since little is known about the curvature of the fibrils or the modulus of the 
noncrystalline regions. The parameter u/t wil l  be large, but is 
likely to be appreciably less than E,,u . 

Comparison of Theory and Experiment 

Unfortunately, it is difficult to find adequate experimental results on 
man-made fibers with which to test the theoretical equation (26). Further- 
more, in addition to the approximations of the model, there is the difEculty 
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of calculating a value of 6 in fibers: effective orientation angles can be cal- 
culated from birefringence measurements, but only if a particular model for 
the structure is chosen. Using the equation given by Hermans and Platzek6 
to relate orientation to birefringence, values of modulus have been plotted 
against 0 for nylon, ordinary rayon, and high-modulus rayon, with the use 
of data from British Nylon  spinner^,^ de Vries,8 and Courtauld~.~ An 
attempt to fit eq. (26) to experimental results for nylon and ordinary rayon 
at angles 0 of up to 15' led to negative values of Eo, and this indicates poor 
agreement between experiment and theory for these materials. 

8 
Fig. 6. Variirtion of modulua of high-modulus rayons with orientation angle; Comparison 

of experiment and theory (data from Courtaddsg). 

The results for high-modulus rayon are shown in Fig. 6. The modulus 
figures were obtained in the wet state, and the data include results for 
Fortisan (effectively perfect orientmation), a Lilienfeld rayon, normal 
S.C.28 high-modulus rayon, and an experimental series of S.C.28 fibers 
with varying stretch. A theoretical curve with El = 693 g./tex and EZ = 
96 g./tex fits the experimental results quite well. The value of El is 
equivalent to lo00 kg./mm.2 which is of the right order of magnitude, and 
it is reasonable that the value of Ez should be much lower. These results 
therefore show that the modulus of high-modulus (polynosic) rayons is 
compatible with a fibrillar structure. 

The effect of moisture on the mechanical properties of rayon fibers is also 
interesting. The polynosic fibers show a high dry modulus (rather greater 
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than that of cotton) which is reduced to a limited extent on wetting, as 
shown in Figure 7. This is entirely compatible with a fibrillar structure 
and the comparatively small change on wetting shows that the continuous 
crystalline fibrillar network does have an important effect on the mechanical 
properties. 

By contrast, the ordinary and high-tenacity rayons show a lower dry 
modulus, and this is reduced enormously on wetting. In fact, the initial 
steep part of the stress-strain curve disappears completely in the wet fiber, 
as shown in Figure 7. This sort of behavior is what would be expected for 

EXTENSION ' l o  

Fig. 7. Load-exkmion curves for rayon (after Griflithsll). 

a fringed micelle structure, in which the deformation is essentially that of 
noncrystalline material restricted in only a limited way by the presence of 
occasional blocks of crystalline material. On plasticizing the structure with 
water, the modulus would be expected to fall drastically, as a result of the 
breaking of all crosslinking between the molecules in the noncrystalline 
regions. The theory of deformation in these materials should therefore be 
worked out by a development of the methods used on a fringed micelle 
structure by Cumberbirch and Mack,'O who have developed a theory of the 
strength of rayon fibers which shows good agreement with experimental 
results. 

Conclusion 
An approximate theory of the deformation of fibers containing an ir- 

regular, roughly oriented, fibrillar structure has been worked out. The 
theoretical equation does not fit experimental results for nykm and ordinary 
rayon fibers, but in view of the crudities of the analysis and the simplifica- 
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tions of the model this cannot be taken aa conclusive evidence against a 
fibrillar structure, particularly as the experimental values were limited to 
values of 0 less than 15'. This evidence does add support to a view that 
crystallization in these fibers may be dominated by nucleation and thua 
may not lead to a fibrillar structure. 

On the other hand, the theory does fit the experimental results for high- 
modulus (polynosic) rayons which are formed by the regeneration and 
crystalliaation of cellulose 89 a result of a chemical reaction in an inter- 
mediate oriented solid fiber of a cellulose derivative. This particular mode 
of formation may be expected to lead to a fibrillar structure. 

The mechanical behavior of polynosic rayons differs from that of ordinary 
rayons, notably in the greater stiffness and in the influence of water, and 
this illustrates the importance of understanding the relation between struc- 
ture and mechanical properties of fibers. Changes in physical fiber struc- 
ture may prove to be a very useful means of modifying fiber properties. 
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Synopsis 

A theory of the extension of a roughly oriented fibrillar structure is worked out. Two 
mechanisms are involved: an extension of the fibrils, and a bending of the fibrils with 
accompanying deformation of noncrystalline material lying between them. The com- 
bined equation for both mechanisms does not fit experimental results for nylon and or- 
dinary rayon, but does fit results for high modulus (polynosic) rayons. 

On a blaborb une thborie de l'extension d'une structure fibrillaire partiellement orienae. 
Celle-ci comprend 2 mbcapiSmes: une extension dea fibrillea et  une tension des fibrilles 
accompagnbe de la dbformation du maeriau noncristallm situ6 entre elles. L'Bquation 
combinbe pour lee 2 mBcanismea ne correspond pas aux rBsultats exphrimentaux dans 
le caa du nylon et de la rayonne ordinsire, mais s'accorde bien aux rbsultats pour des 
rayonnee A module Bled (polynoaique). 
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Zusammenfammg 

Eine Theorie fiir die Dehnung einer miieSig orientierten Fibrillenstruktur wird ausgear- 
beitet. Zwei Mechanismen werden beriickaichtigt: eine Dehnung der Fibrillen und 
tine Biegung der Fibrillen mit gleichzeitiger Deformation dea dazwiachen befindliehen 
nichtkristallinen Materials. Die kombinierte, beide Mechanismen beriicksichtigende 
Uleichung entapricht nicht den Versuchwrgebnissen an Nylon und gewohnlichem Rayon, 
wohl aber denjenigen an hochelastischen (polynosischen) Rayons. 
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